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SUMMARY

This report contains our studies on applications of the finite-element
approach to transonic flow calculations, and it includes comparisons between
different discretization techniques of the differential equations and boundary
conditions. Transonic flow calculations can be divided into two main categories:
type-sensitive methods and type~insensitive methods. Finite-element analogs of
Murman's mixed-type finite—difference operators for small-disturbance formula-
tions are constructed, with different strategies used in the subsonic and super—
sonic regions. In the supersonic region, no upstream effect is allowed;
blending elements are introduced between different regions. On the other hand,
as an example of type-insensitive methods, the time-dependent (unsteady) approach
(using finite differences in time, finite elements in space) is examined. The
elliptic methods, where the transonic equation is cast into Poisson's form with
the nonlinear terms as a driving force, provide another example. The report is
concluded with a general shock-fitting procedure based on discontinuous shape

functions and with possible extensions to full potential equations.



INTRODUCTION

Computations of steady transonic flow can be formulated in terms of
either the Euler equations or the velocity potential equation; but, regard-
less of which formulation is chosen, these computations generally rely on one
of two basic iterative procedures. The first procedure involves integrating
a set of hyperbolic equations (in time) until a steady state is reached, while
the second approach makes use of relaxation techniques.

The hyperbolic procedure is frequently formulated in terms of the com-
plete unsteady Euler equations, but cther hyperbolic forms of the equations
of motion have also been used. The hyperbolic procedure is attractive
because a converged solution, which includes both subsonic and supersonic
regions, can be obtained without making any explicit consideration of the
mixed character of the flow field. Unfortunately, the convergence to the
steady state has proved to be quite slow.

By contrast, the relaxation procedures cannot produce converged solutions
unless special local (spatial) discretization procedures that account for
the mixed elliptic-hyperbolic nature of the flow field are used. When the
local character of the flow field is properly accounted for, however, the re~
laxation procedures converge much faster than the hyperbolic ones. The choice
of the most appropriate type of spatial discretization must take into account
their differences.

Solutions of the Euler equations in the transonic regime have been ob-
tained by means of standard finite-difference procedures (based on the
Lax-Wendroff or the McCormack schemes) as well as finite-volume techniques.

Solutions cf the velocity potential equation have generally relied on the use



of type-dependent, finite-difference schemes cf the kind first introduced to
numerical transonic flow calculatiéns by Murman and Cole (ref. 1). Recently,
accelerated iteration procedures for finite-difference calculations using

fast Poisson solvers (elliptic methods) proved to be very efficient. Martin
and Lomax (ref. 2) used elliptic methods, in the form of a system of first-
order equations, for cases of small disturbance, while Jamesoﬁ (ref. 3) solved
the full potential equation.

In this report, we examine the application of the finite-element approach
to transonic flow calculations. We consider hyperbolic, mixed-type, and
elliptic methods. The appeal of finite~element procedures is twofold. First,
finite-element procedures are capable of accurately and efficiently enforcing
boundary conditions, even when the boundaries are geometrically complex.

(The application of boundary conditions in finite-difference schemes becomes
very difficult when the boundaries are complex in shape.) Second, finite-
element procedures reduce the number of grid points (or elements) required
to achieve a solution of a desired accuracy through the use of efficient,
higher-order shape functions or mixed finite-element methods. We note that,
although both of these advantages are important in two-dimensional flows
(with which we are concerned in this report), they become crucial in three-
dimensional calculations.

We have carried over from finite-difference methods as much understanding
of numerical transonic techniques as possible. More specifically, we have
made the basic assumption that techniques that are successful in transonic flow
regimes when using finite-difference methods should also be successful when
using finite-element techniques, and likewise for techniques that fail. As a

result, our primary emphasis has been on solving the small-disturbance equation,



not the full velocity potential equation. Furthermore, we have been satisfied
with enforcing boundary conditions on a straight line (in accordance with
small-disturbance theory). The use of finite—-element procedures on this sim—
plified problem as an end in itself is not justified; finite-difference methods
are undoubtedly better suited to the small-disturbance problem. Nevertheless,
we believe that the feasibility of developing finite-element procedures that
are capable of handling mixed, elliptic-hyperbolic flow fields can best be
demonstrated in this simpler environment. Extension to the more complicated
problems for which finite-element methods are better suited should be simpli-
fied after the small~disturbance problem has been completed.

Much of our present effort, therefore, has been spent on solving the
small-disturbance equation in a rectangular domain with simplified boundary
conditions, by means of rectangular elements and linear shape functions. This
simplification not only makes the finite-element procedure easier to apply,
but also brings it parallel with finite~difference procedures, which have
proven to be successful in this simplified problem.

From this "jumping-off" point, we proceed to higher-order shape functions
with a parallel review of higher-order-accurate, finite-difference procedures
so that effects that are related to improved accuracy can be separated from
those that are derived from the basic differences between finite-element and
finite-difference techniques. Finally, using elements with curved boundaries,
we consider the solution of the full potential equation and its extension to
nonrectangular domains.

One of the most prominent differences between finite differences and
finite elements that persists even in the simplified problem described above

is that the matrices associated with finite-element schemes are generally



solved by direct methods rather than by the relaxation techniques that are used
in finite-difference methods. Economically, iterative techniques are usually
more suitable for large, sparse matrices, whereas direct methods are more
suitable for more moderately sized matrices. As noted above, the larger ele-
ments that can be used for finite elements result in matrices more moderate in
size, so direct inversion is favored. Later in this report we consider whether
it is more ecomomical to relax or to invert directly a given matrix system, but
we note here that there is mathematical basis for selecting one scheme over the
other. For example, becéuse of the unique properties that are transmitted to
the matrix when the equation changes type (from elliptic to hyperbolic), re-
laxation methods could fail while direct methods would succeed. That is, the
relaxation procedure might diverge even in cases where the inverse of the
matrix actually exists.

One of the most important features of transonic flows is shock waves.
Like finite-difference methods, shocks are either captured or fitted. 1Imn this
report we discuss a general shock-fitting procedure for finite-element calcula-

tions and we use a simple version in our computations.
TRANSONIC SMALL-DISTURBANCE THEORY

The assumption of the existence of a velocity potential, along with re-
striction to small disturbances, greatly simplifies the transonic flow problem
while, at the same time, it retains all the fundamental nonlinear, mixed-type
mathematical properties that are characteristic of transonic flows. Despite
its relative simplicity, the small-disturbance equation is capable of ade-

quately describing the transonic flow field around many configurations of



practical interest, and it has been used in numerous engineering applications.

In its small-disturbance form, the transonic velocity potential equation is

(K= 00, + 6 =0, ¢

where ¢ represents the perturbation velocity potential, K represents a

. PR . . - .
transonic similarity parameter, and x and y refer to a Cartesian coordi-
nate system (see fig. 1). The boundary condition to be applied in the vicinity

of the body is

b, = £,60 - a, (2)

where f+ represents the body shape and o signifies the angle of attack.

Consistently with the small-disturbance approximation, this boundary condition
may be applied on the line y = 0 . The airfoil surface boundary condition is
generally complemented by an analytic expression for the far field, which re-
presents the combined effects of a doublet and a vortex. The formulation of
the problem is summarized in figure 1.

In the small-disturbance equation, the sonic line is given by the point
where ¢x = K , and, by inspection of equation (1), we see that when
¢X = K (sonic condition), ¢yy vanishes. This latter condition is enforced
explicitly in many numerical schemes. Once ¢x becomes greater than K ,

the equation changes type and btecomes hyperbolic. In the hyperbolic (super-

sonic) region, the characteristic directions are

(dx/dy)? = ¢ - K, (3



while the shock relations for the small-disturbance velocity potential for-

nulation are

K- ¢ >=- (.dx/dy)i (4)

and
m, 7N
(). -1,
s,
where < > and ﬂ ﬂ signify the average and the jump across the dis-

continuity, respectively.

Related Work on the Small-Disturbance Equation

In conjunction with our discussion of the small-disturbance equation, we
mention some related work. Some of this work is related to information that
can be used to understand the iterative procedure, some is concerned with de-
veloping more economical iterative procedures, and some describes appropriate
limitations on the small-disturbance approximations that support the transonic
small~disturbance equation.

One interesting study is the work of Sichel (ref. 4), who considered the

effects of viscosity on transonic flows. In his work, Sichel used the viscous

transonic equation:

b0 -6 =V . (6)
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Although his work points out some important limitations of inviscid transonic
small~disturbance theory, we wish to reference here the direct parallel be-
tween the physical viscosity term in the viscous transonic equation and the
artificial (or numerical) viscosity that is used in numerical transonic flow
studies. We discuss artificial viscosity in later sections.

Another work of interest is Landahl's investigation (ref. 5) of the un-

steady transonic equation:

K-, +ad )+ Oy = BOyy

+ .

Yo,, D
This equation can be construed as representing one of the complete unsteady
solution procedures described in the Introduction. A second interesting aspect
of this equation, however, is the so-called low-frequency form of this equation,

which is obtained by neglecting the high-frequency terms ¢ and ¢t as

tt

follows:

(K =900, + 0o =60, - _ (8)
Equation (8) is closely related to the relaxation procedure used to solve the
transonic small-disturbance equation.

Finally, we should enumerate some of the limitations of the transonic
small-disturbance equation. The approximations upon which the transonic small-
disturbance equation are based generally break down near the leading edge of a
transonic wing. Such leading edges are, for engineering reasomns, generally
blunt, so the flow must turn as much as 90° from its original direction. Turns

of this magnitude are not allowed in small-disturbance theory. Keyfitz, Melnik,

8



and Grossman (ref. 6) have given more complete consideration of the problem of
the blunt leading edge. Fortunately, ignoring the details of the leading edge
region allows acceptable engineering accuracy to be achieved in the remainder
of the flow field.

Sirovich and Huo (ref. 7) have tested the validity of the transonic small-
disturbance equation in the vicinity of the sonic line, while Landau (ref. 8)
and Guderley (ref. 9) have discussed the details of the flow in the intersection
between the sonic line and the shock wave. The intersection of a normal shock
wave with a curved surface has been discussed by Zierep and Oswatitsch (ref. 10),
who determined the character of the solution near this singularity.

One transonic phenomenon that we do not consider in this report, but must
at least mention, is the effect of viscosity in transonic flow regimes. Vis-
cosity is important in shock-wave boundary-layer interactions and in the
trailing edge region. Either of these regions can generate local-separation
bubbles, which substantially alter the flow from its unseparated, inviscid
state. Some specific works that discuss methods for including these viscous

effects include those by Melnik and Grossman (ref. 11).
FINITE DIFFERENCES

Unsteady Approach

Magnus and Yoshihara (ref. 12) obtained numerical solutions of the Euler
equation in the tramsonic region, using a Lax-Wendroff finite-difference scheme
(with artificial viscosity) marching in time to the steady state. For small
disturbances, Magnus and Yoshihara used the following hyperbolic system of

equations:



[en]
]

(X - U)Ux + Vy s ¢))

<
it

v, + U (10)

The calculations were too lengthy and expensive, and, hence, this method

was abandoned.

Murman's Fully Conservative Scheme

One of the most popular techniques for solving the transonic small-
disturbance equation (TSDE) is Murman's fully conservative, type-dependent,
finite-difference scheme, or variants of it (see ref. 13). As indicated in
figure 2, Murman's scheme is characterized by four distinct operators: an
elliptic operator E for subsonic regions; a hyperbolic operator H for
supersonic regions; a parabolic operator P for points on (or near) the
sonic line; and a shock-point operator SPO for enforcing the jump conditiomns
across the shock. The elliptic operator is based on a second-order-~accurate,
central-difference formula, while the hyperbolic operator is obtained from a
first-order-accurate, backward-difference representation. The remaining two
operators, the parabolic operator and the shock-point operator, represent
blending elements for grid points on the boundaries tetween elliptic and hy-
perbolic regions.

The four finite-difference operators described above can be used to con-
vert the continuous, partial differential equation (1) into a discrete system
of algebraic equations which describe the behavior of the solution at a
fixed set of points in the flow field. The system of equations generated
by this discretization is generally solved by a line-relaxation algorithm

10



which iteratively sweeps the matrix, line-by-line, from left to right.
During the relaxation process, the solution is over-relaxed (w > 1) in the
elliptic .region, but in the remainder of the field it is usually mildly under-
relaxed (w < 1) . Since this discretization scheme is only first-order
accurate in the supersonic region, it is first-order accurate overall. Be-
cause of the relative simplicity of the scheme, the low accuracy can be
offset by using a finely divided mesh.

We note that, in the far field, the doublet strength due to the flow

around the body is given by

2
D = jl[ ¢x dx dy + Dlinear . (11)

As can be seen, the doublet strength depends on the solution itself. The
double integral is generally updated at selected intervals during the
iterative procedure so that when the solution converges, the far-field
representation is intimately tied to the numerical solution (and conversely).*
The use of this analytical representation of the solution far from the
airfoil greatly decreases the domain included in the computation.

A series of sample calculations, which have been obtained from Murman's
fully conservative scheme and which indicate the influence of various factors

in the scheme on the final solution, are given in figures 3A through 3C.

*We also note that Cheng and Hafez (ref. 14) have shown that the far-field
behavior near the boundary may be fitted by using a least—-squares technique;
thus, performing the double integration over the entire flow field is no
longer necessary.

11



The base case, which is designated as "Case Al" in the figure, includes all
the factors in the Murman scheme, as described above. Unless otherwise noted,
these calculations are for a uniformly-spaced grid system in both the x

and y directions, with 10 grid points on the airfoil surface, 10 points up-
stream of the leading edge, and 10 points downstream of the trailing edge.

The first comparison (fig. 3A) demonstrates the effect of the shock-
point cperator on the final results. As shown, the shock-point operator
allows a much more rapid velocity change across the shock (compare Cases Al
and Bl in fig. 3B). The comparison between Cases Al and Cl shows the effect
of incorporating the far-field solution (Case Al) instead of enforcing a
homogeneous boundary condition (¢ = 0) at the same point (Case Cl). Case D1
shows the effect of placing the leading and trailing edge points halfway be-
tween grid points, compared to the effect of placing grid points on the leading
and trailing edge points. The results in figure 3C show that the apparent
shape of the airfoil is altered when the positions of the leading and trailing
edge points are shifted with respect to the grid system. This effect is
amplified in the present case by our use of a relatively coarse grid system.
Also in figure 3C, we show the effect of halving the grid size. Cases D1 and
H1 show the higher degree of accuracy that can be obtained with the finer
grid system.

Among other considerations that are directly related to numerical methods
are those techniques concerned with accelerating Murman's relaxation solution
so that convergence can be obtained more rapidly. One such approach is the
use of extrapolation techniques, such as those reported by Cheng and Hafez
(ref. 15) and Caughy and Jameson (ref. 16). Extrapolation techniques attempt

to accelerate the painfully slow iterative procedure by obtaining numerical

12



estimates of the dominant eigenvaiues in the finite-difference matrix and by
using these eigenvalues to extrapolate the iteration to a level much closer

to convergence. Such extrapolation techniques have exhibited time savings of a
factor of 4 to 5 over the more conventional line~relaxation procedures.

A second acceleration dévice, which has proven very effective for
finite-difference calculations, is one that replaces the nonlinear transonic
equation with a Poisson equation having the nonlinear term as a right-hand-side
term. The matrix corresponding to the constant-coefficient elliptic (left-
hand-side) operator is then solved by a direct inversion technique. Based
on this interim solution, the nonlinear (right-hand-side) term is updated, and
the "fast-solver" is again employed. With this technique, convergence has been
very rapid (generally less than 10 of these major iterations), provided the
supersonic region is treated properly. If no special treatment is applied
for the supersonic region, the procedure fails. Very impressive results (in
terms of the amount of computer time required) have been reported by both
Martin and Lomax and by Jameson (see refs. 2 and 3). In their studies,
slightly different techniques were used for treating the supersonic region.
These are discussed more fully in the following section, A Fully Conservative,
Second-Order Scheme for Finite Differences.

Two additional studies that are concerned with developing more rapid com-
putational procedures are also in progress. Ballhaus and Steger (ref. 17)
and Jameson (ref. 3) are using alternating-direction implicit methods, based on
an efficient matrix factorization technique for solving the Euler equations.
The second approach is a multi-grid technique being developed by Brandt and South

(ref. 18). This technique solves the transonic equation on a series of grid

13



spacings which vary from fine to coarse and fine again. The basis of this pro-
cedure is to increase the speed of the iterative relaxation process by
diminishing the error in a different segment of the frequency spectrum of the
matrix with each distinct grid system.

Another acceleration technique is the use of discrete, shock-fitting pro-
cedures, which have been reported by Cheng and Hafez and by Yu and Seebass
(see refs. 15 and 19). Shock~fitting really has no capability for increasing
the speed of the relaxation process; however, it indirectly achieves such zn
improvement. Shock-fitting is really concerned with improving the spatial
discretization so that shock waves can be handled with a relatively coarse mesh
(compared to the extremely fine grid that must be used when the shock is not
fitted). The coarse grid that is used with shock-fitting decreases the amount
of computational time by reducing the number of unknowns (grid points) to be

computed.

A Fully Conservative, Second-Order Scheme for Finite Differences

As indicated in the previous section, Murman's fully conservative finite-
difference scheme is accurate only to the first order. The low accuracy occurs
because upstream effects are not allowed in the supersonic region, and, hence,
one-sided differences must be used in that region. The numerical scheme is
therefore (formally) less accurate in supersonic regions than in subsonic
regions, where central differencing is employed. To make the accuracy in the
supersonic region comparable with that in the subsonic region (thus making
the entire calculation second-order accurate), we may use either of two methods.

We can include more grid points in the computations for supersonic points, or we

14



can turn to 2 Hermitian scheme in which both ¢ and its derivatives are stored
2nd used at each grid point.

One reason for consideriﬁg a finite-element scheme is the premise that, -
through the use of a more accurate local representation of the solution, the
total number of grid points can be decreased, and, thus, the computer storage
requirements, as well as the central processor time requirements, can be
reduced. Such goals are particularly urgent for three—-dimensional transonic
flows. With the goal of improved accuracy in mind, we consider first the
requirements that are imposed on a finite-difference scheme when it is extended
to higher accuracy. It seems reasonable to expect that those problems encoun-
tered in a second-order-accurate, finite-difference scheme would also be present
in a finite-element scheme, so their solution should give some indication of
whether a given finite-element technique will be successful.

Murman and Cole suggest an implicit, second-order—accurate, backward
difference scheme as an alternate to the first—-order—-accurate, backward dif-
ference scheme that was used in the supersonic flow region. They hinted in
their paper (see ref. 1), and it has been verified since, that calculations
employing this second-order—accurate, backward difference scheme sometimes
diverge during the relaxation iteration. Because of this difficulty, nearly
all velocity potential calculations have been made with schemes accurate only
to the first-order.

More recently, Warming and Beam (see ref. 20; see also Martin's work,
ref. 21) have extended Murman's fully conservative scheme to the Euler
equations. Although they were primarily concerned with the Euler equations,
Warming and Beam suggested (but did not test) a second-order—accurate, back-

ward difference scheme for the transonic small-disturbance equation, including

15



a shock-point operator and a parabolic point. We note that Murman's, as well
as Warming and Beam's, second-order backward difference scheme is both dis-
sipative and dispersive compared to Richtmeyer's standard (non-dissipative)
scheme (éee figs. 4A and 4B). The important questions concerning these
second~order schemes, especially in our finite-element context, are why

is the second-order—accurate scheme of Murman so much less reliable than

his first-order scheme and will the alternative proposal of Warming and Beam
alleviate this problem?

We begin by considering the latter cof these two questions. We incorporated
the second-order-accurate scheme of Warming and Beam into our version of Murman's
code and tested it. The results of a few numerical experiments quickly showed
that it fared no better than Murman's second-order-accurate scheme; it failed
to converge reliably. We believe that the reason for the failure of both of
these second-order—accurate schemes is closely tied to the parabolic point and
its function in stabilizing the finite-difference scheme. Consequently, before
presenting the modifications required to make second-order—accurate schemes
converge, we first review the purposes for using the parabolic point.

The parabolic point in a finite-~difference scheme serves the following
three purposes:

a. First, it excludes the possibility of expansion shocks. In other
words, the parabolic point ensures that the fluid experiences, at most,

a finite (and not an infinite) acceleration. This point can be seen easily

from the transonic small-disturbance equation itself:

(Ko, -~ Mb), + (9) =0 . (12)
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At the sonic point, we have

K - ¢ (13)

i}
o

which indicates that ¢yy = 0 at the sonic point only if ¢xx is bounded.

b. The second purpose of the parabolic point is to ensure consistency
in the flux conservation across the sonic line, where the switching operators
are employed.

c. Third (and perhaps most importantly) the parabolic point guarantees
that the discretized system matrix can be inverted (and, if possible, constrains
it to remain positive definite). To explain this point, we consider node
Pl in figure 4C. At point P1 the test of whether the node is to be treated
as subsonic or supersonic is based on the sign of the coefficient K—¢x which
is evaluated by means of central differences. Since the point P is (by

1
definition) supersonic, a backward difference at Pl creates an inconsistency
in the matrix which is removed when the parabolic condition ¢yy = 0 1is applied.
All three of these conditions are satisfied in the first-order-accurate,
backward difference scheme if a single parabolic point is introduced; however,

the same is not true for second-order schemes. In particular, point P (see

2
figure 4C) again introduces an inconsistency into the matrix if a second-
order—~accurate, backward difference scheme is used there. At successive

supersonic points downstream of point P, , the second-order-accurate, backward

2
difference formula can be applied without difficulty. Consequently, our sug-

gested remedy is to introduce rot one, but two parabolic points at the sonic line

when second-order schemes are used in the supersonic region.
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Using two parabolic points, we.have done numerical experiments in which
second-order-accurate formulas were used in both the ‘subsonic and supersonic
regions. The results have shown that the second-order séhemes do converge
reliably (with about the same number of iterations as is required for first-
order schemes) when the second paraboliec point is added. In order to obtain
a second-order system that is completely analogous to Murman's first-order
scheme, we also consider the requirements of a shock-point operator in a
second-order scheme.

The shock-point operator serves some analogous (though not completely
identical) purposes in cases where the flow switches from supersonic to
subsonic, as the parabolic point does when the flow goes from subsonic to
supersonic, When decelerating through the sonic point (whether discontinuously,
as across a shock, or continuously, as across a decelerating sonic line), we
introduce the shock—-point operator for the following purposes:

a. The shock-point operator allows for a discontinuity in ¢x .

b. The shock-point operator ensures a consistent flux conservation in
the presence of switching operators.

c. The shock-point operator guarantees that the discretized system

matrix can be inverted (and that it is positive definite, if possible).

Note that, except for the first, these purposes are identical to those cf
the parabolic operator. Item (a) in the parabolic list ensures that (expansion)
shocks cannot occur; item (a) in the shock-point list ensures that (compression)
shocks can occur.

To introduce our shock point, we start by analyzing Murman's
shock~point operator for the first-order~accurate scheme. Using the

nomenclature in the sketch below,
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1,3+1

Z
u
% 3 2 22 R
1-2,j 1-1, 22 1, ] 1+1,§
7
1,541

we have from equation (12)

2, , bx

P Ay? @y, 3¢0 =~ 205,53 % 03 5.0 =0 -

(Kul - %ui) - (Ku3 - Lu

Then, by adding and subtracting the quantity, Ku2 - %u§ , Murman obtains

(Ku; ~ %ui) (Ru, - %ug) + (Ku, - %ug) (Kuy - )
' i§2 @i, 500 7 25,5+ 95,50 =0

or [K - 4(uy + uz)} (u; = u,y) + [K - 35(u, + US)] (u, - uy)
+ 2:2 (¢i,j+l - 205 4 ¢1,J—l) -

(14)

(15)

(16)

19



Murman then linearizes equation (16) by evaluating (ul + u2)/2 and
(u2 + u3)/2 using the most recent available values. Extensive numerical ex-

periments have confirmed that the resulting scheme is stable and that the

iteration converges with extremely good reliability.
The introduction of the shock~point operator for our second-order-accurate
scheme must also be done with care. We begin by first considering a shock-point
operator that is analogous to Murman's and then consider the one suggested by
Warming and Beam (see ref. 20). Emphasis in both of these cases will be on

satisfying all three of the purposes outlined above.

We use the notation in the sketch below.

Xi,j+l
22 ]
/u
72
Y4 U3 — - Y1
% ¥* X 7 ———————X
i-3, 3 i-2,3 i-1,j 2 i,] i+,
7 J{.i,j—l

We allow a discontinuity in ¢X between points i-1 and i and obtain
an elliptic shock-point operator with a derivative boundary condition for the
velocity u, downstream of the shock. This boundary condition must be consisteni

with the locally normal shock-jump relation

2K - u, 17)

u

together, they give

vt Ax
K -5 | (0 - uy + —;2 (¢j+l - 26, + q;J._l) =0 . (18)
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Numerical experiments with this scheme have indicated that it allows reliable
convergence in the relaxation iteration and that the results converge to.the
same limit reached with Murman's first-order-accurate scheme.

We have also obtained a second-order scheme that is formally equivalent to
the one suggested by Warming and Beam. To obtain this scheme, we replace

equation (17) by

[=1
]

9 2K - (2u3 - u4) (19)

and substitute equation (19) into equation (18). Again, we obtain a stable
scheme. Some results are given in figure 5. The effect of the shock-point

operator is distinguishable in the fine grid calculations.

Use of an Elliptic Solver

In all numerical techniques for solving the transonic equation, some method
of linearization is used to convert the nonlinear equation into a system of
linear equations, which can then be solved by various means. The specific tech-
nique for linearizing the equation has a considerable effect on the amount of
computer time that will be required to obtain the solution and may even determine
whether the iteration for the nonlinearity converges or diverges. We now attempt
to classify some methods for linearizing the equation, with emphasis on under-
standing how and why the Poisson technique works.

a. Picard (linearization by freezing coefficients)

(X - ¢n)¢n+l + ¢n+l

< Prxc vy =0 . (20)
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b. Rayleigh-Janzen (linearization about the equivalent incompressible

flow)

(21)

mH ¢n + 8¢ , hence JS&$ = —R(¢n) where J

¢. Newton-Raphson (Let ¢
is the Jacobian and R(¢n) is the residual. As a special case of this

method, J(¢n) is approximated by J independent of n.)

n

[k - ©F + 60] Wl + S0, 0 + p + 80 =0, (22)

which, neglecting second-order terms, gives
n n n
K - 9080, + 8o - ¢y 86 = -REG™ ,

where the right-hand side is the residual

R@™ = (K - ¢Me" + ¢ . (23)

x’ XX vy

Note that the Picard iteration is basically Murman's scheme (except the ;;near—
ized coefficient is updated during the iteration instead of after it), the
Rayleigh-Janzen scheme is the one chosen by Martin (ref. 21) and is discussed
at length below, while the Newton—-Raphson scheme is similar to iterative

schemes based on the unsteady small-disturbance equation.
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In the Newton-Raphson scheme, the differential operator

(XK - o) L (24)
¢x82 27 Pxx B
X oy

which is the Jacobian of the small-disturbance equation, is of mixed
type and switches character at the same location the original equation

does. If we represent the Jacobian as

T (25)

we note that it is very similar to the unsteady, small-disturbance equation,

K= 000, + 0o -2, =0, (26)
. . nt+l n
where we associate ¢xt with ¢x ¢x .

The convergence of these iterative methods for the case of elliptic
equations has been studied extensively; however, their application to tran-
sonic flow represents an entirely different problem. Martin and Lomax (ref. 2)
have suggested an iterative procedure for transonic flow, which is identical to

the Rayleigh—-Janzen technique. More specifically, they linearized the transonic
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equation by placing the nonlinear term on the right-hand side and then solved the
resulting Poisson equation by a direct matrix inversion (fast elliptic solver).
After each iteration, the nonlinear right-hand side was updated. Their initial
efforts were successful for transonic solutions that included very small super-
sonic regions; however, after applying special stabilizing procedures, they were
able to extend the technique to free-stream Mach numbers, which allowed much
larger supersonic bubbles. The obvious question that this technique raises
is: How can a mixed-type equation be solved as a series of Poisson equations?
Jameson has reviewed this iterative approach and has shown that the tech-
nique fails for purely supersonic flows (see ref. 3); however, with the addition
of an additional de-symmetrizing term to the Laplacian, the iteration can be made
to converge, even in supersonic flow. Thus, we consider the solution of the

equation

X

aSh,, + e 68, + 86 = R(™) (27)

and use central differencing for 6¢XX and 6¢yy but use backward differencing

for ¢x (and R(¢n)) , to obtain

n+1 n+1

od (89) + B(8GT S - &6TTT )
Ax 2 2.n
+ (=) 9 §¢. .) = -Ax"R. . , 28
(AY) YY( ¢1,J) * 71,3 (28)
where axxf = fi—l,j - Zfi,j + fi+1,j and Byyf = fi,j—l - Zfi,j + fi,j+l .
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For supersonic flows with periodic boundary conditions, the Von Neumann stability
analysis shows that stability is obtained when 8 > 20 + |K2| , where

Kl = K—¢£ . If B 1is chosen in this manner, we can use a fast direct solver to

invert the left-hand side. Thus, we see that, if we attempt to solve the
hyperbolic equation by a series of "elliptic'" operators, we must add the (large)
term B¢X/Ax to ensure stability.

A heuristic analysis of this de-symmetrized operator shows that when
B/Ax 1is large enough to ensure stability, the operator is no longer elliptic.

For example, consider the following difference scheme in the x direction:
2
(Ax )LX = aaxx6¢ + 8(6¢i - 6¢i_l)
= adp;,, - 2089, + adp, | + BSH; - BSG, , » (29)

which, after we regroup the terms, becomes

WxHL = (@ - B, | - (2a - B, + ob, ., - (30)
Defining the new parameter

a' = (2a - B)/2 , (31)
we can rewrite equation (30) as

WL = ( - -g-)q;i_l - 209, +<a' + %)qsiﬂ , (32)
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which is a valid approximation for

L =a [cpxx + o(sz)] + 52 ["’x + O(sz)]. (33)

X

It is immediately obvious that the type of equation (33) depends upon the sign
of o' , which can, in turn, be controlled by the magnitude of B . Thus, if
B > 20, , the equation becomes hyperbolic, and we see that the Von Neumann
criterion for stability in supersonic regions is equivalent to requiring that
the left-hand side operator be made hyperbolic.

If we now return to equation (27) and use central differencing for ¢X s We
see (by again following our heuristic argument) that it is not possible to change
the type of the equation. Similarly, the Von Neumann condition also indicates
that the Poisson iteration for the wave equation will not converge when central
differencing is used for the 9/9x term. Thus, we see that it is not this term
alone, but rather the unsymmetrical differencing of it, that allows convergence.
The introduction of the asymmetric term ¢x in backward-difference form is neces-
sary for convergence because it removes the elliptic nature of the left-hand side
operator and causes it to be hyperbolic.

We have conducted a numerical experiment based on this idea by using a line-
relaxation version of the snalysis of Martin and Lomax. Instead of using the
primitive variables u and v , we use the velocity potential ¢ . The line
relaxation should effectively introduce the precise term ¢xt (or 6¢X) , which
is needed for convergence. The solution does indeed converge and the results
are shown in figure 6.

The special stabilization procedure referred to above, which Martin and

Lomax used, was a u, term. The use of this de-symmetrizing term zllowed them
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to extend the technique to transonic flows with large supersonic bubbles. As we
noted above, we argue that this de-symmetrization term is effective because
it changes the type of the left-hand side operator in the supersonic region so

that it is no longer elliptic.

FINITE ELEMENTS

Hyperbolic Methods

Finite-element procedures can be applied directly to hyperbolic schemes;
in particular, the Lax-Wendroff scheme epplied directly over the finite-element
formulation (finite element in space, finite difference in time). Thus, if we

consider a Taylor series expansion in time, we have

ult + At) = u(t) + uAt + uAc? (34)
and if

du _ 9F(u)

5t~ %’ (35)

we can express

ii=%£(A%), (36)

where A is the Jacobian of F(u) ,
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Hence,

2
- oF At” 8 (), OF
u(t + At) = u(t) + . At + 5 % (A ) .

37)

(38)

Examples of using finite-element procedures to solve Lax-Wendroff schemes such

as these have been given by Oden (ref. 22), who used a Galerkin procedure.

If an explicit artificial viscosity term is added, we obtain an equation

that is similar to the one studied by Wahlbin (ref. 23). When the explicit

artificial viscosity term is added, the transonic equation, in its small-

disturbance form, becomes

[

l
=~
[

+
<

+
m
[=]

ol

If we now represent the velocity in terms of a shape function V¥ as

=
[

b, (6,3 U, (D)

<
L]

v, Gey) V(6
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and apply a Galerkin procedure, equations (39) and (40) become

[ e ) 5 = o v ) o

+ﬂ(“’i,y Vs “’j) dx dy +ff(€ Vs, ax Ut ‘Pj) dx dy (43)

and

[[(wi v wj) dx dy = ff(wi,y U, wj) dx dy —]f(wi’x v, ‘Pj) dx dy .

(44)
These can be written in the more compact form
dUi
Mg = KgKyaUp tCyVy t edijUi (45)
dVi
— = - - 6
Mij dt CjiUi KjiVi (46)
by defining the matrices
M =[f by ax dy (47)
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j]‘____w dx dy , (48)
=/[%1pjdx dy , (49)

f[ 5= 5ot dx dy . (50)

For the special case of linear shape functions and rectangular elements,

the functions wi become

V. = 1_2{_)(1_}’_) u,_x_(l_z_)
1 ( h b, 2™ by h,
1!) —X_.L IP =(]__._X__>L (51)
3 hl h2 4 hl h2

so that the matrices C, D, K, and M become

-2 -1 1 1

hl -1 -2 2 1 (52)
Cji =13 -1 -2 2 1
-2 -1 1 2
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. -2 2 1 -1
D,, == 11 2 -2 (53)
ji 6h1
1 -1 -2 2
[-2 2 1 -1
N 2 2 1 -1
- _2 _ _ (54)
Ky: = T3 101 2 -2
-1 1 2 -2
and [ & 2 1 2]
2 4 2 1
h. h
_ hyhy (55)
M= e 1 2 4 2
2 1 2 4

Implicit schemes are recommended for solving either these systems or
ordinary differential equations in time so that stability restrictions can
be avoided, especially in the latter case where the ¢tt term appears.

Kreiss and Scherer have reviewed the convergence of iterative schemes
such as these (see ref. 24) and have shown that they are always stable for
semi-bounded operators. Swartz and Wendroff have reached similar conclusions
for Burger's equation (see ref. 25). The disadvantage of using techniques of
this type is that the mass matrix must be inverted at each step.. This
effect can, however, be diminished by going to the lumped mass formulation.

In passing, we mention that, instead of the Galerkin method, the least-
squares method may be used (in space) in the same way Carasso solved the wave

equations (ref. 26) and a coupled system of wave and heat equations (ref. 27).
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We also mention an interesting work by Mote (ref 28). Mote has considered’
the use of global-local finite elements, where the known characteristics of
the global solution to the problem of interest are exploited. For example,
the global behavior of the incompressible flow solution éould be used in a
global~local scheme for transonic flow. Note, in addition, that some global
methods (in the classical sense of Ritz) have been applied to compressible and
even transonic flow as early as twenty years ago by Wang (ref. 29). His
computations did not include any shocks, although he suggested a shock-fitting
procedure,

Finally, we should note the important parallel between transonic flow and
shallow-water theory. The hydraulic analogy leads to equations of motion that
are identical to the transonic equations if the ratio of specific heat Yy
is taken to be 2.0. A comparison between finite-difference and finite-element
techniques for shallow-water theory has been given bf Weare (ref. 30). We note
without comment that he concluded finite-difference procedures were more

economical for this problem (see also ref. 31).

Mixed-Type Methods

Introductory Remarks - Some Simplified Models for the Transonic
Small-Disturbance Equations

According to the transonic small-disturbance approximation, the stream-
lines are almost parallel to the x axis, and the nonlinear effects occur only

in the x terms, as can be seen directly from the following small-disturbance

equation:

(56)

]
o

(K - 906+
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A one-dimensional version of this equation,

2
-1 =
(K¢x 6¢X)x o, . (57)
has teen studied by Bauer et al. (ref. 32). By treating P as a general

matrix and ¢ as a vector, we can extend Bauer's equation to the more

versatile form
X¢_ - %ct’z) + P =0 (58)
x x'x ?

which corresponds to not one, but a system of, ordinary differential equations.
This latter system, equation (58), is almost identical to the transonic equa-
tion, and it can be obtained from the transonic equation by a step that we shall
refer to as semi-discretization. By semi~discretization, we mean that ¢

is continuous in x , but is discrete in y . As an example, we can use
central differencing to approximate ¢yy in equation (56) and so can arrive

immediately at equation (58), where the matrix P is given by

[— —
-2
1 1 -2 1
P = ) \\ \\ \\ (59)
Ay AN \ \
N \
\\ \ \
\
- M
2 -2
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To complete the system, we must modify the first and last rows of P by
applying the boundary conditions.®* Similar representations can also be ob-
tained by applying the Method of Moments or by applying a finite-—element
technique in space (in the y direction only).

After some appropriate discretization in y has been applied to the tran-
sonic equation, the resulting equation (58) can be categorized for either
subsonic flow or supersonic flow by the following two classical systems of
equations:

a. The case of subsonic flow is closely analogous to the two-point boun-

dary value problem

- @) +Pb=0, (60)

which is the one-dimensional, steady-state heat equation.
b. The case of supersonic flow is closely analogous to the initial

heat value problem

- Q)" +Pd =0, (61)

which is the equation for a mass-spring system.
A separate body of literature exists for each of these equations; tran-
sonic flow represents a combination of both of them. In the subsonic region,

the equation is elliptic (boundary-value in nature), while in the supersonic

*
Note that P can be diagonalized: A system of uncoupled ODE's can be con-
structed if the eigenvalues and eigenvectors of the matrix are known.
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region it is hyperbolic (initial-value in nature). The nonlinearity of the
transonic equation is .essential since this nonlinearity is responsible for the
‘transition from one region to the other. The nonlinearity also permits com—
pression and expansion shock waves to occur (i.e., a discontinuous transition
from hyperbolic to elliptic).

The application of finite-element techniques to the two-point BVP
corresponding to equation (60) is well established. Applications of finite-

element procedures to initial value problems, like equation (61), have also
been used in the field of structural dynamics; however, usually finite-
difference methods are used for this equation. Thus, the general pattern

is that finite—element procedures are used more often than finite-difference
procedures for boundary-value problems, but that finite-difference techniques
are used more frequently for initial-value problems. In the present transonic

case, the question cf which technique to use is not as obvious since the tran-

sonic equation is of mixed-type and encompasses both types of equations.

A Comparison of Various Discretization Techniques
In this section we compare three distinct methods that can be used to
discretize a partial differential equation. These three methods are finite
differences, finite volumes, and finite elements.

Discretization methods. - The construction of a finite-~difference scheme

is usually based on a Taylor series expansion. The stability of the resulting
difference scheme can then be easily investigated in a linear, local sense by
applying the Von Neumann stability analysis, as long as the grid system is
rectangular. Heuristic stability analyses, which again rely on a Taylor series,

can also be useful in categorizing the truncation error as either dissipative
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or dispersive. Boundary conditions are easily included in a finite-difference
scheme when the boundaries are rectangular, but when the boundaries become
nonrectangular or irregular, their finite-difference representations become
cumbersome and inaccurate. Thus, the application of boundary conditioms or
irregular boundaries represents one of the key weaknesses of finite-difference
procedures.

In the finite-volume technique, the principal idea is to convert the
differential equation into its integral form before applying discretization pro-
cedures. The advantage of this approach is that it transforms the differential
equations, which are really mathematical expressions of certain conservation
laws, into a form that allows the conservation of these same quantities to be
verified and enforced easily in the discrete system.

The third type of discretization, finite elements, can be obtained by
applying either a variational principle (such as the one used in classical
mechanics) or a weighted residual method. The weighted residual methods, in
turn, include Galerkin techniques and least-squares methods. Finite-volume
techniques can be considered as specific realizations of the method of weighted
residuals (the method of subdomains).

Applications of discretization techniques to elliptic problems. - The

classical five-point formula for the Laplace equation represents an interesting
example of the application of the three techniques described above (see Varga's
discussion). For the case considered here, the same five-point formula can be
derived by means of a Taylor series expansion (finite difference), by conser-
vation of flux across imaginary boundaries (finite volume), or by means of

finite—element techniques based on triangular elements and linear shape functions
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as shown for the first time by Courant.* Although all these techniques lead to
identical results for the Laplace equation on a uniform grid system, in general,
they lead to different schemes,

As an example of the types of differences that are generated when the
three techniques are applied in more general circumstances, we again comnsider
the Laplace operator; but this time, insfead'of considering the five-point

formula, we consider the nine-point scheme in the sketch below,

1 4 1

4 4
-20

1 4 1

which can be expressed as the linear combination of the following two five-

point formulae.

Four Plus One

*

Birkhoff and Gulati (ref. 33) have noted that Courant's derivation of the
five-point formula for the Laplace equation, which is based on the Ritz
variational method, does not gemneralize to the Poisson or Helmholtz equation.
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Finite-volume techniques, which are based on replacing the area integral

by an equivalent line integral (Gauss's theorem) in the following fashion,

I 0
— -
-— -

give a result which is equivalent to the finite-difference representation

if linear shape functions are used on rectangular elements, with a weighting
function, which is unity, inside the domain and zero outside. Note that be-~
cause of the cancellation on the interior sides of the line integration, only
the corner points appear in the finite-volume representation.

Finally, the use of finite-element techniques based on a variational

principle, result in a discretization that can be expressed as

1 ok 1
1 -2 -2 Y
Y -2 -2 Y
1 L L 1
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and that, in finite-difference terms, is equivalent to the equally weighted

sum of the finite-difference formulae

One Plus One

Birkhoff and Gulati have considered general discretization procedures for
linear source problems, with a view towards determining optimal, few-point
representations (see ref. 33). Their comparative study considers both five-
point and nine~point discretizations on regular mesh, along with some
discussion of the three-point analogs for the corresponding one-dimensional
case. The results show that global accuracy of five-point formulae could
never be greater than 0(h) when the grid was nonuniform, nor better than
O(hz) when the grid was uniform, regardless of how the formulae were obtained.
This accuracy is, of course, exactly the accuracy that is cbtained with standard
five-point, finite-~difference formulae. They also demonstrated that the opti-
mal accuracy for the nine-point formula was 0(h4) with a uniform rectangular
mesh and that it deteriorated to O(hz) for a nonuniform mesh. This order of
accuracy is equivalent to that achieved by the Rayleigh-Ritz method, with
bilinear approximating functions.

As an example of the use of higher-order elements, we consider the ap-
plication of plecewise~continuous cubics to the discretization step. The
dependent variables can be represented by cubics through the use of three
distinct elements (shown in the sketch below): (1) cubics for which cnly the

function itself is constrained to be continuous at the nodes (e.g., serendipity
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elements); (2) Hermite cubics for which the function and its (two) first deri-
vatives are continuous at the nodes; and (3) cubic splines (tensor product
of a one-dimensional spline) whose second-derivatives are continuous at the

nodes.

(1) (2) (3)

Since cubic splines require more grid points and are restricted to rectangular
elements, we actually compare only the Lagrange and Hermite cubics. The
Hermite cubic formulation seems to be more accurate. Later, we give some
numerical results for incompressible flow over a parabolic-arc airfoil to
demonstrate this accuracy. For the sake of comparison, we also discuss a mixed
variational principle that uses linear shape functions in ¢ , u(=¢x) and
v(=¢y) . As noted previously, such lower-order elements can be used in con-
junction with extrapolation techniques (such as Richardson's) to obtain
higher—-order accuracy.

Wheeler (ref. 34) has analyzed another method of obtaining very accurate
approximations of the flux values at particular points in the domain for the
two-point boundary value problem. This method is based on evaluating the moment
of a Galerkin solution of the problem, and it reduces the error -in the flux
from O(hr) to O(th) . Such improvements in the computation of the flux
appear quite attractive for a velocity potential solution for which the flux is

the principal quantity of interest.
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Applications of discretization techniques to hyperbolic problems. - For the

wave equation, the literature can be divided into two categories, namely, those
algorithms that.use finite-element techniques in space but finite differences in
time, and those algorithms that use finite elements in both space and time. It
is interesting to note that most of the work concerned with developing mathemat-
ically rigorous proofs of the characteristics of the discretized system have
used a combination of finite-element and finite-difference techniques, while
most of the work using only finite elements has been more engineering oriented.
Examples of work in the first category include the efforts of Birkhoff
and Dougalis (ref. 35), Swartz and Wendroff (ref. 25), Swartz (ref. 36),
Vichnevetsky and De Schutter (ref. 37), Vichnevetsky and Pfeiffer (ref. 38),
and Goudrea and Taylor (ref. 39). On the basis of their work on the wave equa-
tion, Birkhoff and Dougalis recommend the Numerov scheme, which is a combination
of both finite differences and finite elements in space. The Numerov scheme
takes advantage of the fact that the phase errors in finite-element and finite-
difference schemes are opposite in sign, and by the use of a proper combination
of the two phase errors, obtains a scheme with excellent dispérsive properties.
Goudrea and Taylor evaluated different numerical integration methods in
structural dynamics, including the methods of Newmark, Wilson, and Houboult.
Argyris et al. (ref. 40) have generalized the Newmark family of schemes and
they were able to obtain unconditionally stable schemes by incorporating
a few simple modifications.
Finite-element techniques in space and time have been studied by Argyris
(see refs. 40 and 41), Fried (ref. 42), and Zienkiewicz and Lewis (ref. 43).
The work of Argyris and Fried is based on Hamilton's principle. In their
work, they do not allow the function at the end point to vary (as is tradition-

ally done in a Hamiltonian approach), but they do allow the magnitude of the
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initial velocit& to vary. This method is similar to the method of inverse
shooting, which was used in our previous paper (ref. 44). In that work we also
repléced the initial value problem by an equivalent boundary value problem.
Zienkiewicz and Lewis have based their work on Galerkin or least-squares
techniques. They use Hermite cubics and consider both the end position and the
velocity as unknowns; thus, they obtain a series of weighted residual equatiomns.

Some algebraic examples of finite-element formulae for initial value and

boundary value problems. — To illustrate the differences between these various

discretization techniques, we consider a simple, one-dimensional example problem:

6. —-¢=0. (62)

We have constructed formulae for both elliptic (boundary value) and hyperbolic
(initial value) problems (using Hermite cubics as shape functions) for each of
three finite-element procedures, namely, the Hamiltonian, the Galerkin, and the
least-squares techniques. The results are summarized in figures 7 and 8, where
we present the influence coefficients corresponding to equation (62) for the
node between two adjacent (one-dimensional) elements.

As an example, we describe the procedure for determining the Galerkin
results in detail so that the diagrams in figures 7 through 9 can be more
clearly understood.

We define the numerical representation of ¢ 1in equation (62) over any

element in terms of the Hermite interpolating polynomials Bi(x) , as

¢ = Bi(x)xi , 1 =1,4, (63)
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where the parameters Xi represent the unknowns (the influence coefficients)
determined for each element. The Hermite polynomials are cubic curves that are
defined over each element and that satisfy the following four sets of boundary
conditions at the ends of the interval (O,h) . (Since the polynomials are

cubic, we can specify four end conditions in each interval.)

Boundaryr -
Condition
Function Bi(O) Bi(O) Bi(h) Bi(h)
Bl(x) 1 0 0 0
Bz(x) 0 0 1 0
83 (x) 0 1 0 0
Ba(x) 0 0 0 1

Thus, each polynomial satisfies one unity boundary condition and three homo-

geneous conditions. Algebraically, these polynomials are defined as

B, () = 1 - 3(x/m)% + 2(x/m)° (64)
B, () = 3Gx/n)? - 2Gx/m)> (65)
By (0 = [x/h - 2(x/m)? + (x/h)3] h, (66)
B, () = [—(x/h)z + (x/h)3] h. | (67)

By the usual Galerkin procedure, we choose a weighting function ¢ and

require that the equations, after being multiplied by { , be satisfied on the
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average over the interval (O,h) corresponding to one element. Thus,

we require

h )
[h@ v - o) ax = 0 (68)

and immediately integrate by parts to give

foh(cpxwx + OP)dx = B.T. , (69)

where B.T. refers to boundary terms occurring at the ends of the element.
We now choose the weighting function Y to be equal to the polynomial Bi
corresponding to the appropriate degree of freedom. Then, using the numbering

system defined below for a single element,

d 1 2
® 3 4

we compute the influence coefficients, in turn, for the function and its
derivative at the right end and, then, at the left end.
The influence coefficients for the function ¢2 at the right end of the

element are given by
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h h Q1
[, +amax = [P L + 8,8,)%
'2 2 | '
+(By% + BIX, + (BYBY + B3B,)X,
+(BLB£ + 6482))(4 dx = B.T. , (70)

where the weighting function for point 2 is Bz . After performing the indi-

cated integration, we obtain the following relation between the four values

of X; »
54h 36 156h | 36
(420 30>X1 * ( 420 * 30>X2 *

2 2
13h% 1 22n% 1 _
(420 - TB)X3 + (' 420 10)X4 = B.T. (71)

If we repeat this integration for the degree of freedom number four
(¢x at the right end) here, using 84 as the weighting function, we obtain
a similar relation, and similarly, for the two degrees of freedom at the left-
hand end. The results are summarized in figure 7.

Having derived the influence coefficients for each degree of freedom
in terms of the other degrees of freedom in the same element, we now combine
two elements and obtain the appropriate influence coefficient for the center
point in terms of the six (total) degrees of freedom in the two elements. De-

fining two elements A and B and using the following notation,
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$ 1 2 3
) 4 5 6

we obtain, for the second degree of freedom (for the value of ¢ at the

center), which is the left end of element B and the right end of element A:

s4n _ 36) , (156h , 36\ . (13n® 1
420 ~ 30/%1 T\z20 T 30)%2 T \z20 T 10/%
22h% 3 156h . 36
* (' 420 "36) X5 * (420 * 36) Xp *
54h 36 22n% | 3 130 1
(420 - 36)X3 + (420 + §6>X5 + (‘ 220 T 10/% = 0 > (72)

which is an equation for Xy in terms of X1» X3, Xss Xsg» and Xg - A similar
application gives a second equation for degree of freedom number five, which
corresponds to the derivative ¢X at the intersection between the two elements.
The influence coefficients for ¢ are summarized in figure 8A, along with
similar results that have been obtained with the least-squares procedure. The
results obtained from the Hamiltonian method are identical to those for the
Galerkin procedure and have not been rewritten in figure 8A. Figure 8B
gives the same comparison of influence coefficients, but this time for ¢X .
The supersonic (initial value) case can also be computed from the
results shown in figure 7; but, when the two elements are considered together,
the downstream element must not have any effect on the solution for the in-

fluence coefficients corresponding to the central point. Again, using the
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notation from the sketch on the previous page, we write the relationship for

Xy in the supersonic case as
54h 36 156h , 36
(420 } 30)X1 * (420 - 30)X2 *

2 2
13 3 220 3 ~
(420 - 30)X4 + (‘ 420 30)X5 = B.T. . (73)

These Galerkin results for the supersonic problem are summarized in
figure 9 in a format identical to that used for the subsonic case (figure 8).
Again, Hamiltonian and least-squares results are also shown. Note that in the
initial value case the Hamiltonian results (where the method of inverse shooting
has been used) differ from the Galerkin results. Also note that the downstream
points do not contribute to the solution at the central point.

Influence coefficients for a two-dimensional example. -~ Similar tables for

a two—dimensional case (partial differential equation) are given in figures 10

through 12. For this case, we have considered the Laplacian equation:

dé + ¢ =0 (74)

-4 +d¢__ =0 (75)

for the hyperbolic case. Again, these tables are based on the Hermitian inter-

polating polynomials.
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Chan and Brashears (ref. 45) have applied a least-squares procedure to
transonic flows. In this work, the upstream effects are zeroed out in the
supersonic region. This procedure is identical with the one proposed by

Zienkiewicz and Lewis for the wave equation (see ref. 43).
Schemes for Transonic Flow

In a previous paper, Hafez, Murman, and Wellford (ref. 44) derived two
distinct finite-element schemes for the transonic small-disturbance equation.
These two schemes used different discretization criteria for their development.
The first scheme uses a finite-element technique in the space-like variable
(v) and a finite-difference representation in the time-like variable (x). The
only difference between this finite—element scheme and Murman's scheme is in the
mass matrix. If a lumped mass is used, the scheme reduces identically to
Murman's; if a consistent (Graham) matrix is used, the schemes remain distinct.
In the consistent-mass matrix formulation, three y levels of the x equations
are coupled. Comparison with Murman's results show that the two calculations
are almost identical (differences occur only in the fourth decimal place);
i.e., the lumped-mass (finite-difference) and the consistent-mass (finite
element in space) methods give comparable results.

The second scheme described by Hafez, Murman, and Wellford is the "inverse
shooting" technique, which uses a finite-~element discretization in both the
space-like and the time~like variables. Unlike the first scheme, the inverse
shooting scheme is not unconditionally stable. We can show this readily by

writing the scheme in the form of Von Neumann and Lees:

K,¢ = ¢ + hwp s K, = [K=-9¢_]| , (76)
Lixxo YYe.p. xxyy® &
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where the subscript C.D. refers to central difference (see ref. 46). Von

Neumann and Lees showed that this equation was unconditionally stable only

when w <% . The corresponding value for ®w in our scheme is w = (K& + 1)/6.

By analogy to the system of Von Neumann and lLees, we see that our system is

non—-dissipative and that it has dispersive properties that depend on w .
Because of the conditional stability of equation (76), it is evidént

that terms proportional to ¢xxyy and ¢yyx (a dissipative term) are

needed. 1In particular, if these terms are added with the proper multipli-

cative coefficient, the scheme becomes identical to the backward-difference

scheme used by Murman. If linear shape functions and rectangular elements are

used, the finite-element representation of both ¢ and ¢ becomes iden-

XXyy Yyyx

tical to their counterparts obtained from centered finite differences. When

higher-order shape functions are used for the finite-element representation, it

no longer remains obvious that these two terms sufficiently guarantee stability.

Fortunately, however, Showalter (ref. 47) has obtained a rigorous answer to

this question. He studied two nonstandard methods for integrating the initial

value problem
B + AP = £ (77)

in a Hilbert space using Galerkin projection techniques. The first method, when

applied to the equation

B3¢ _pp=f (78)

(where A refers to the Laplacian), is
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2o en o=t (79)

where € 1is restricted to be positive. The second method, applied to the same

equation, has the form

3t?

2 2

Lo ent o np = £ty (80)
ot

In this model, these regularizations represent artificial viscosity or artificial
inertia. TIn our simple example, A is replaced by 82/By2 so that the first
term is ¢yyt and the second term is ¢yytt . Some numerical examples, using
artificial viscosity and artificial inertia, that have been obtained from our
finite-element model are shown in figures 13 and 14. Again, we have used line-
relaxation methods to obtain these solutions.

As discussed in our previous work, the introduction of blending elements
is crucial to the success of a transonic-flow computational technique. For
example, if we use a centered finite~difference approximation of ¢yy in the
sonic element rather than a Galerkin approximation, the calculation sometimes
diverges, and, even when it does converge, more iterations are required. Some
examples of this behavior are given in figure 15.

The second blending element used in these calculations is a finite-element,

shock-point operator, whose specific form is shown in the sketch below.
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4Ky 4K 8Ky —8K, + 4K | 4y 2 + 4K

X K2y, K T | -1 + K,

The same results can be obtained with locally normal shock~fitting, namely

where uj are velocities that satisfy the normal shock polar

> Y41 0 Y541

relation. These results are shown in figures 13 and 14.
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Elliptic Methods

A Mixed Variational Principle fof Transonic Flow
When developing finite-element approximation methods, we might benefit
from a variational development of the appropriate differential equations. In
this variational development, we introduce functionals whose Euler equations
are equivalent to equation (1). Initially, we introduce the ''primal functional"
J(¢) where ¢ 1is the perturbation velocity potential. This functional is

given as follows:

3@ =5 [o &y 0+ 0Dax dy

1 3
-3 [q K% gy, (81)
where Kl =1 - Mi s K2 = Mi(l + Y¥) . For the moment we disregard the boundary

conditions. For simplicity, we consider the Dirichlet boundary conditions (¢
is specified on all boundaries). The first variation of the functional J(¢)

is defined for arbitrary mn satisfying the boundary conditions by

83(¢) = 1w (e 5”; =30 (82)

e >0

The second variation .GZJ(¢) of the functional J(¢) 1is defined similarly.
By setting the first variation of the functional equal to zero and applying
the fundamental theorem of the calculus of variations, we get the following
result:

Theorem 1: The Euler equation corresponding to J(¢) is
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(K, = K, 0,00, + b =0 . (83)

Taking the second variation of J(¢) , we get

Theorem 2: For arbitrary n satisfying the boundary conditions
8%3(9) = [, -k, 0. 9n2 + n? | ax ay (84)
QL1 2 "x''x y

From equation (84) we determine a basic property of the variational method. For
subsonic flow, GZJ(¢) > 0 because Kl - K2¢x >0 . But, for strongly super—
critical (transonic) flow, Kl ~ K2¢x < 0 for many points in & . Thus,

the second variation of the functional J(¢) has no definite sign for the case
of transonic flow. A method for iteratively approximating this problem (essen-
tially, the variatiomal analog of the standard procedure of shifting the

nonlinear term to the right-hand side of the equation), however, is to find the

critical points of a new functional J(¢(n+l)), which is defined as follows:

2 2
— (), _ 1 (1) (@)
Ty = 2 jé (Kl¢x + 0] ) dx dy

2
- %-]5 K2¢in) ¢in+l) dx dy . (85)

The Euler equation of this functional is

(+1) | o (a+l) _

(n)  (n)
_- gy o) . (86)

Kp o Ky0y
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¢(n+l))

The second variation of 3( is
- +1 2 2
2Ty = [ @ ni+nd) axay . (87)
Q x 7
Since Kl >0, we get
§2 Ty > 0 , for all n . (88)

Thus, in the iterative scheme, the second variation 623. is always positive,
while in the original problem the second variation GZJ is indefinite. This
inconsistency serves as a mathematical (rather than physical) explanation of
the nonconvergence of iteration equation (86) to supercritical flow solutions
observed by Martin and Lomax (ref. 2) and Chan and Brashears (ref. 45). The
discrepancy noted above is the motivation for the approach developed in this
paper.

A mixed formulation can be developed by letting ¢ be the perturbation
velocity potential and by letting u be the x component of the perturbation
velocity. Then; a mixed function I(¢,u) associated with the small-

disturbance transonic problem is given as follows:

I(¢,u) = %/Q (K,9) + ¢)dx dy

1 2
- E-j; Kzu ¢X dx dy +

Wik

/ﬂ K2u3 dx dy . (89)
Q

We define the first variation of I with respect to ¢ and u by 6¢I and
GuI . By setting 6¢I =0 and GuI = 0 , we obtain the following result.
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Theorem 3: The Euler equations corresponding to the functional I(¢,u) are

Kl¢xx ~ Kzuux + ¢yy =0 (90a)
u - ¢x = { (90b)
The second variations of I with respect to ¢ and uv are denoted by 5;1

and 631 , respectively. TFrom equatien (89) we obtain the following.

Theorem 4: The second variations of the functionmal I(9,u) relative to the

parameters ¢ and u are

2. f 2 . 2

5¢I = jé (Klnx + ny)dx dy , (91a)
2 2

s —‘/ﬂ K6 0% dx dy (91b)

where 14 is a variation in ¢ or u .

Clearly, the second variations behave as shown below:

2

T >0,

¢ —_—
621 >0 ¢_ positive
u x ?
621 <0 $ negative .
u x
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The present formulation thus allows us to divide the domain of the flow § into
regions (usually two in number) in which the sign of the second variation of the
function with respect toc ¢ and u is always known. In contrast, if we use the
primal formulation for transonic flow, the sign of the second variation is in-
definite so it is not possible to specify specific regions in which the second
variation has a specific sign. Suppose we let Ql be the part of the domain 0
in which ¢x 1s positive and 92 be the part of the domain § in which ¢x

is negative. Then = QlL192 . We let Il(¢,u) be the functional 1 restricted

to Ql . We let Ia(¢,u) be the functional T restricted to Qo . Then,

the solution to problem (1) can be characterized as the ser (&%,u*) such that

MIN MIN I,(d,u) = T, (¢*,u*) (92a)
1 1

u @

MAX NIN I,(¢,u) = I,(¢%,u%) . (92b)

u i -

In Theorem 3, we have verified that the correct differential equations
[corresponding to equation (l)] result from the mixed variational principle.
We now rewrite the functional to include the proper boundary terms. In approxi-
mation procedures, the set of boundary conditions for the infinite domain &

is normally replaced by the following set on a finite domain (also called

2 ):

dg _ 4 - e
1+ ¢.) ax ¢Y 0 , on the airfoil (93a)
¢y =0, on ¥y =0 upstream and downstream of the airfeil (93b)
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¢ = far-field solution . (93c)

For simplicity, we neglect ¢x relative to 1 in equation (93a). The resulting

v condition is
o =38 o oaslit 9, . (94)

This boundary condition can also be handled iteratively as in Chan and Brashears
(ref. 45). We included this iterative application of the boundary condition

in our analysis, but we do not discuss it here. Then, we let ds be the arc
length along BQb in x,y space. We now introduce a mixed functional

I(¢,u) , which includes the natural Neumann boundary condition along BQb :

T, = 1 /Q Ry 0% + 00 dx dy

1 [ 2 1 3

- E:/Q Kzu ¢X dx dy + 3:/5 K2u dx dy

- f %5 6(3) d5 . (95)
3%, x

Taking the first variation of 1I(¢,u) with respect to ¢ , we obtain, as Euler

equations, equation (90a) and

o = 38 (96)
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Since the functional 'f(¢,u) is developed for the small-disturbance formula-
tion (which assumes a very thin body) to within the order of fhe approximation
used, ¢ﬁ =~ ¢y . Thus, the boundary condition [equation (94)] is satisfied.
When varying EK¢,u) , we obtain one additional integral associated with BQl .
This term occﬁrs when we integrate the second term on the right in equation (95)
by parts in x , and we obtain an integral over dy (the thickness of the air-
foil). Since in small-disturbance theory we assume the thickness of the airfoil
is small, we can assume this term is negligible. In fact, in most finite-
difference approximations, the boundary conditions are applied not on the body,

but on the chord. Then, the integral in question disappears.

A Mixed Finite-~Element Model For Transonic Flow
To develop a finite-element model for transonic flow, we divide the

domain {2 dinto finite elements Qe . Then,

E
a=Ua ,

e=1 €

where E 1is the total number of elements in the domain. On each domain
Qe we introduce an approximation for the potential function ¢ and the per-

turbed x velocity component u of the following form:

ée(x,y) = Ti(x,y)éi s (97a)

Ue(x,y) Bi(x,y)Ui > (97b)
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where Wi(x,y) and Bi(x,y) are finite—element interpolation (shape) functions,
and ¢ and U are values of the potential function ¢ and the velocity u at
the nodes of the element.

The index notation (involving i) in equation (97a) and (97b) implies that
a summation should be performed over the number of nodes in the element. In

terms of (@e,Ue) , the functional I takes the following form:

T -1 _1
L(®,U,) =5 Ky 5% - 5 Lyl UiV
+im  vouwu
3 ijk 1 ik
- F, 0, , 98
5 % (98)

where

d8 y 43 .

o)
i
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The finite-element analog of the variational procedure [equation (92)] is to
require that the functional TK@e,Ue) have a stationary value relative to

variations in Qj and Ui . We set

afccbe,ue)
55, =0 (992)
éf(@e,ue)
—8Ui———— =0 . (99b)

From equation (98) in conjunction with equation (99),

-1
=7 LypsUiU + (100a)

30, —LiijjCDk + MiijjUk (100b)

Equations (100a) and (100b) represent the finite-element equilibrium equations
for a single element Qe . The corresponding equations for the entire domain

2 are obtained with standard assembly techniques (see ref. 22).

Dual Iterative Solution Algorithms
The use of a combination of direct solution and gradient algorithms to
solve the algebraic equations obtained from mixed-finite element models was

initially proposed by Ciarlet and Glowinski in conjunction with the biharmonic
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equation (unpublished data from P. Ciarlet and R. Glowinski, 1975). These

' We adopt the same

methods have become known as '"dual iterative methods.'
approach here. The variational problem [equation (92)] involves a mini-
mization procedure in ¢ and a minimization-maximization procedure (in
different domains) in U . We solve for the ¢ variable, using a direct
solution method, since 6;1 is always positive, and we solve for the U
variable, using a gradient method, which locally accounts for the sign change

of 531 . We thus introduce the following direct-gradient algorithm for the

small-disturbance transonic flow calculation (for p = constant > 0 ):

(nt+1) _ 1 (n) (n)
Ky O 7 Ligg U5 U g (101a)
—(n)
o) _ g o, 3 , (101b)
j ou.,
3
where
TR C RN CYS DR O &
3V, ik i k ik ik
and
c=1 GS.T(“)io,
hj
c=-1 §2 T(™ 5o,
U.
3
where
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2—=(n)
2—=(@) _ 9T - (nt+l) L)
6U,I =0 ijk @k + Zijk Uk (102)
j BUj

for each element. From (100b) we see that the gradient of T relative to Ui
is zero if Uj = 0 for all nodes in the element. In fact, we see that the
variation of I with U for positive ¢y varies, as shown in the sketch

below.

I(u)

To prevent convergence of the algorithm to the trivial solution U = ¢_= 0 ,

we choose C as shown in the chart below:

¢ Positive
X
2
GUI GUI C

negative negative -1
negative positive -1,
positive positive -1
positive negative 1
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¢ Negative
X
8T GSI c
negative positive 1
negative negative 1
positive negative 1
mﬁbsitive positive -1

We treat the gradient solution step as the integration of a time-dependent

equation in the incremental time parameter t

(n)
ou . 0 af(n)

ot “Ac U, (103)

where At is the increment of incremental time t , or

0™ ()
ot - f(Uk ) -
Numerical experiments have shown two deficiencies in the iterative algorithm.

First, for transonic flow, there is no convergence to shock-wave solutions.

Second, the iterative scheme seems to oscillate about the solutions.
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Artificial Viscosity Models
To obtain the correct generalized solution for the transonic flow problem,
we introduce artificial viscosity. Let El be a positive constant. The gra-

dient algorithm augmented by artificial viscosity is

ee,

= 8P v -1
U =5 UU=9) - 7= U, - (104)

We use equation (104) in regions where ¢X is positive (C = -1). Differen-
tiating equation (104), with respect to x , introducing the result in equation

(90a), and assuming U =< ¢x , we obtain the following equation:

K. € K At
= 271 2

XX vy X XX

0 . (105)

XXX 2p XXt

If we assume that the iteration converges, the last term on the right goes to

zero, and the resulting equation is

Koe1
Kl¢xx + ¢yy = K2¢x¢xx ) cbxxx ? (106)

where ¢xxx is the artificial viscosity term. This term damps the ¢
equation. To provide convergence in the U equation, we introduce another
viscosity term into equation (104). For a positive constant €1 (used
only when ¢x >0), we get
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pE, PE,

= Cp - - 5 _2
Ue = e u(u ¢x) At Ux T A Usx ¢ (107)

The last term on the right introduces a viscous term into the U equation. In-
troducing a finite-element analog for the last two terms on the right-hand
side in equation (104) and incorporating these into equation (101b), we obtain

the following expression:

(ntl) _ . (n) _
U =T an At Dij i

oI PEy ey
| h

+ Cp

2 o @

At Ciji (108)

where

Diy = fﬂe BigBy dxdy  Ej, = fsze BixByx dx Ay -

We developed a computer program DUALIT to solve the equations formulated
above. This code contains all of the features of the subsonic programs,

SUBSON1 and SUBSON2, described in the Appendix.

Numerical Results
We did test calculations for flow about a 6~percent parabolic—arc airfoil
with the mesh of eight-node serendipity elements shown in figure 16. For
3

these calculations, 81 = 1.4 x 10—2 and €y = 0.7 x 10 ° . 1In figure 17
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we compare the resulting CP distribution to thé results of Murman for

K = 1.8 (M = 0.875) .
A GENERAL SHOCK-FITTING PROCEDURE FOR FINITE ELEMENTS

A more general shock-fitting procedure, which was previously used by
Wellford and Oden in elastodynamics (see ref. 48), can be applied to transonic
flows. We demonstrate this application by starting from the unsteady

transonic small-disturbance equation from Cheng and Hafez (ref. 14):

o . = K - ¢x)¢XX + ¢yy . (109)

We obtained this equation directly from the unsteady velocity potential equation
by ignoring the "high frequency" term (¢tt) , and we can also use it to re-
present the iterative (relaxation) procedure (except perhaps with a different
value of o). We proceed with development of our general shock-fitting pro-
cedure by obtaining the weak solution of this time-dependent equation, which
will enable us to predict the shock's movement (both its displacement and

its speed).

We represent the shock shape by the function
£(x,y,t) = 0, (110)

which we assume can be inverted to give the x position of the shock

x - xD(y,t) =0 . (111)
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Using this nomenclature, we write the jump conditions admitted by the weak

solution of the unsteady equation as
2
- -1 =
[of9, - £,(o, - 20D £0.0=0, (112)

where ﬂ H represents the jump across the discontinuity. With equation (111),

we can rewrite equation (112) as

= [o,] + [xo - 2] - el [¢.] =0 | (113)
ot X x  'x Ay gy Y
and defining the speed of the shock as S = 3x/9t , we have

D
[6,] so = ~ [xo, - 303] +32-[o] . (114)

The corresponding jump condition admitted by weak solution for the irrotation-

ality condition

by = Doy (115)
is

ﬂfx¢y - fy¢xﬂ =0 (116)
or

I + o (6.1 =0 (117)

01 oy Do -0
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Combining equations (114) and (117) gives

[6,] so = - [xo, - %07] (——2) i ls.] (118)

or, in its final form, the equation for the speed of the shock is

dy

2
e o (#) 7).

If the flow field approaches a steady state, the shock speed vanishes so

that in the steady state, equation (119) reduces to

dy

<k - o> Mol +(8) -0, (120)

which is of course the jump relation obtained from the steady-state
equations.
The strength of the unsteady shock H¢Xﬂ can be evaluated from the

Hadamard kinematical compatibility equation

(7] ¢

a _ [or oF oF
dt B Hatﬂ 5 + Ug Haxﬂ S + Vg ﬂay]] s (121)

where the subscript S refers to the shock. ¥For our case, F = ¢x , hence,
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[o,]
a x5 _ 1% 3% 3%
dt B ﬂaxatﬂ S + US ﬂ 2 S + VS 9x0y S ’ (122)

where

S dt > s dt - (123)

The shock jump relation can be incorporated into a finite-element procedure
by applying finite differences in time to equation (119) in a manner analogous

to that of Wellford and Oden:

X —x=—8<1<—¢>[[¢]]+(§5)2}n (124)
X X ay >

where B = At/o . (Note that we can use a similar formula for relaxation
procedures, except that now f corresponds to a relaxation factor.) A similar
finite-difference procedure can be used in conjunction with equation (122) to
update H¢XH . As in most numerical procedures, an explicit technique of the
type suggested in equation (124) imposes a maximum allowable step size because
of stability considerations.

As a passing remark, we note that when the transition from subsonic to
supersonic (or from supersonic to subsonic) is smooth, the present finite-
element algorithm is consistent since we automatically require that ¢ =0 .

vy
A similar shock-fitting procedure can also be applied to the full poten-—

tial equation:

P, = —(PD), - (ov)y , (125)
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where, because of the irrotatiomality assumption, we can express the density

p as a function of the velocity only as follows:

p=pu,v) .

Defining the velocity potential ¢ as

so that

we can write the expression for the weak solution of equation (125) as

where

70

w0, V=0
¢xy=¢yx

Oe = Pex
¢yt=¢ty’

[[pft + puf  + pvfyﬂ =0,

(126)

(127)
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Then, following the development of the small-perturbation equation, we arrive
at an analogous expression for the shock velocity and strength. Although this
procedure appears quite promising, it has not yet been tested in either a finite-

difference or a finite-element formulation.
EXTENSIONS TO THE FULL POTENTIAL EQUATION

Although the full velocity potential equation is algebraically more com-
plicated than the small-disturbance equation, the crucial factor that makes the
full potential equation more difficult to solve is that the direction of the
velocity vector in the full potential case is not known. Jameson (ref. 3) has
developed some type~dependent finite-difference schemes and some relaxation
techniques that work well for the full potential equation, but the corresponding

finite-element analog is not obvious.

Hyperbolic Methods

One exception to this difficulty is when the equation is formulated in its
complete unsteady form. In this case, the equation is always hyperbolic, and,
as a result, the use of type-dependent differencing (which relies on a knowledge
of the orientation of the local velocity vector) is not required. Consequently,
finite-element techniques (in space) can be applied in a straightforward manner.
This capability for bypassing type-dependent differencing and retaining central
differences throughout the flow—-field is not limited to the unsteady Euler
formulation; other hyperbolic schemes can also be used.

As a first example, we consider the fully hyperbolic scheme

u, = (pu)x + (pv)y (129a)
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v =u -~V . (129b)

Magnus and Yoshihara (ref. 12), using a finite-difference technique, solved this
formulation numerically, but abandoned it because relaxation methods (velocity
potential) were much faster. They used the Lax-Wendroff finite-difference
scheme, with a special mesh arrangement near the airfoil leading edge.

The weak solution consistent with equations (129a) and (129b) is

[u] £, - fou] £ - fov] £,=0. (130)

Note that this weak solution is different from the one discussed in the proceed-

ing section where the continuity equation
P+ (pu) + (pv), = 0 (125)
was used. Also, note that the flow field described by equations (129a) and (129b$

becomes irrotational only in the limit of a steady solution.

As indicated above, finite-element procedures can be applied directly to

hyperbolic schemes such as these. In particular, we can take the Lax~Wendroff
scheme directly to a finite-element formulation (finite element in space, ;
finite difference, or iterative, in time) and thereby introduce the artificial

viscosity that is necessary for the convergence of the hyperbolic formulation.
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Elliptic Methods

We begin by considering the full potential equation

2 ' 2
u_ _ Zuv ¥ =
(1. az) ¢ 2 ¢xy + (1 az) ¢yy 0 (132a)
or
(00, + (P9 =0 (132b)

and identify three classical schemes that can be used to linearize the equation

as follows:

a. Picard method (1inearizéfion by freezing coefficients),

2 2
n nn n
1 -4 > ¢2:l _ 2u2v ¢n+1 + 1 - v - d)n+l -0 (133a)
n n Xy n vy
a a a
or
n,n+l n,ntl
= 1
( e} ¢x ) < + (p ¢y ) y 0 (133b)
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b. Rayleigh-Janzen method (linearization about the equivalent incompress-

ible flow),

2 2
+1 nt+l u” n 2u™v" n v n
o+ 4 =-1 -9 b - —= ¢ (134a)
XX vy n2 XX n2 Xy n2 vy
a a a
or
n+1 ntl _ 1 n,n n,n
Oux T byy = o (ox¢x + pYbe) (134b)
C. Newton—Raphson method,

Let o™ = ¢ + 8¢ (135)
and I8¢ = -R(™) (136a)
or 36" = 36® - R(e™) (136b)

where J 1is the Jacobian and R(¢n) is the residual.

The Rayleigh~Janzen scheme is the one used by Jameson (ref. 3) and it converges
only for subsonic flows. For transonic flows, Jameson uses a two-step iterative
procedure, in which a fast solver is followed by a line relaxation procedure.

The first step can be calculated by finite elements. Although there is no analogy

for the second step, we discuss some related work below.
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Application of Optimal Control Methods to Transonic Flow

Following Glowinski and Piromneau (ref. 49), we consider the minimi-

zation problem,
2 2
f{(ct)x-u) + (8 =) }dx dy

with the constraints

(¢xx + ¢yy) = - %(K - u)ux + vy} + u + vy .

(137)

(138)

Wellford and Hafez (ref. 50) used a similar procedure based on a mixed

variational principle, which allowed special treatment of the supersonic region.

Thus, instead of comnstructing a functional whose Euler equation include the

irrotationality condition and applying the continuity equation as a constraint

[as in equations (137) and (138)], they constructed a functional whose Euler

equations included both the irrotationality condition and the continuity

condition. This functional can be written in terms of ¢ and u as
= 1,..2 2 1 2 1 3
I(qa,u)—]f[z(mxwy) 2u¢x+3u:|dxdy.

Then, again using the gradient method, we obtain the alternative scheme,

o) —w[Kd)xx + ¢yy - uux] s

Su

— ' —
w'uu ¢X) + E:luX + ezuxx .

(139)

(140a)

(140b)
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In their work, Wellford and Hafez réquiré w'u to be positive by choosing
w' negative when u 1is negative, while choosing ® to be very large, so

that equation (140a) becomes
K¢ + ¢ = uu_ . _ (141)

Note that the term Ezuxx is necessary to prevent the iteration from diverging.
The artificial viscosity term will ensure proper behavior, including the
compression shock (and excluding the expansion shock), in the supersonic region.

These two methods can also be applied to the full potential equation.

Glowinski and Pironneau minimize the functional
2 2
(= 6)" + (v - ¢)° | dax dy (142)
with the constraint

b * by = 0 | W+ (W) | Fu kv (143)

and

1
p = [l P L@ vz)] -1 (144)

The functional in equation (142) can also be solved by a mixed variational

principle in terms of ¢ , u, and v , by a direct extension of Wellford and

Hafez's work. Performing the required extension leads to
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Iwmw>=[[%[wx-w2+wy—ﬂﬂ

+ o (<u2 - up) + 0 - v¢y)] -co' | (145)

- =

where

c = 1/v2 (146)
The minimization of equation (145) yields the following three expressions:

From 9I/3¢ = 0 , we have

Mo + 600 = [ Gow), + (ov), | + 2 [ux tv ] (147a)

from 9I/%u = 0 , we obtain
A - ) = p(o, - w + o (ud, - uP) +p (v - V) (147b)

and, from 9I1/9v = 0 , we obtain

A - 4 = p(oy - v) + pulud - u’) + pvive - v , (147¢)

where A 1is a free parameter.
Additional regularization terms like those introduced for the TSDE are
needed for the convergence of iterations based on this scheme; however, in this

scheme, regularization terms are needed for both the u and the v equatioms.
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One approach is to use, in the supersonic region, artificial viscosity terms
analogous to those used by Jameson in his finite~difference formulationm.

For the subsonic region, the elliptic equation may be put into the Poisson
form and solved iteratively as before. Again, convergence is guaranteed for the
elliptic region; hence, in the subsonic region, Iu and Iv can be replaced

by the simpler relations u = ¢x and v = ¢y to save computer storage space.
SUMMARY AND CONCLUSIONS

We have presented a review of finite-element and finite-difference
techniques for transonic flow calculations. For the transonic small-disturbance
equation with linearized boundary conditions, Murman's finite-difference scheme
is preferred over finite-element procedures, especially if some of the more
recent acceleration procedures (e.g., multi-grids) are used. Such a comparison
with finite elements is based on rectangular elements with linear shape functions.
If higher—order shape functions or mixed formulations with fewer elements are
used, and if a rapid, direct inversion technique is used, the finite-element
method becomes more attractive. Treatment of the nonlinear mixed equation must
include the transition from one region to another, and to allow only for a
compression shock; the technique must have some provision for excluding
expansion shocks.

Hopefully, finite—element methods will retain their advantages in the treat-
ment of boundary conditions for the full potential equation. An unsteady
(hyperbolic) approach for applying finite-element procedures to the full potential
equation has been outlined. Without efficient methods for accelerating the

iterative procedure, however, this method will not be economical.
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Finally, we have looked for optimal control methods for transonic flow;
but, without the inclusion of artificial viscosity or shock-fitting procedures,

we do not expect the calculation of transonic flow fields with large supersonic

regions to be successful.

Flow Research Company
21414-68th Avenue South
Kent, Washington 98031

June 14, 1978
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APPENDIX
FINITE-ELEMENT SOLUTIONS USING GAUSSIAN ELIMINATION

(FRONTAL SOLVER)

As part of this research, we developed two codes to calculate subsonic flows
using standard finite-element techniques. Both programs solve incompressible
and small-distrubance flows about arbitrary bodies, and both could be easily

extended to a full potential formulation.

The first program (SUBSON1) uses two-dimensional isoparametric elements

of the serendipity type.

(¢ modeled at all nodes)

The second program (SUBSON2) uses the tensor product of Hermite polynomials

mapped to an irregular region with auxiliary mapping points (denoted by x).
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$20,20,,

RN

820,00, 320,50,

These two codes are based on the following system of routines:

MESH2D

y

PMESH

!

ITER

'

STIFF

!

ZIPP

t

UNZIPP

{

GRAD

The capabilities of the routines, and, therefore, the program is indicated

in the following descriptions:

MESH2D - Generation of mesh of elements with curvilinear sides

for arbitrary domains



PMESH - Mesh plot
ITER - Iterative driver for solution of subsonic or transonic

flow problems
STIFF - Generation of matrix equations for each element
ZIPP - Frontal solution (direct) routine for a symmetric matrix
UNZIPP - Frontal solution (direct) routine for a nonsymmetric matrix
GRAD - Computation of the gradients of the solution at the Gauss

points

As an example, we computed the incompressible potential flow about a 0.03
parabolic-arc airfoil. 1In each case, the model contained approximately
600 degrees of freedom. The first model had the four-node serendipity element
with 28 elements in the x direction (x = -1.5 to x = 1.5) and 20 elements in the
y direction (y = 0 to y = 2). There were 12 elements on the airfoil.

As a second example, the same case was computed with the eight-node
serendipity element with 18 elements in the x direction (x = -1.5 to x = 1.5)
and 10 elements in the y direction (y = 0 to y = 2). There were 6 elements on
the airfoil.

The solution time for the linear algebraic equations (using the fromtal
solver) was 30.15 C.P. seconds for the four-node case and 29.44 C.P. seconds
for the eight-node case on an IBM 370-158. This time is equivalent to approxi-
mately 7.5 C.P. seconds on the CDC 6600 (using a factor of 4 for conversion).
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Similar runs using line-relaxation methods to solve the same problem (as described
in the section entitled Extensions to the Full Potential Equation) have taken
approximately 7.0 C.P. seconds for 70 relaxation sweeps on the CDC 6600. Thus,

at least for linear problems, the two solution schemes have equivalent cpmputing

times for the moderate-sized examples tested here.

83



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

84

REFERENCES

Murman, E. M.; and Cole, J.: AIAA J. 9, no. 1, 1971, pp. 114-121.
Martin, E. D.; and Lomax, H.: ATAA Paper No. 74-11, 1974.

Jameson, A.: ATIAA Second Computational Fluid Dynamics Conference, Hartford,
1975.

Sichel, M.: Phys. Fluids 6, 1963, p. 563.

Landahl, M. T.: Unsteady Transonic Flow, Pergamon Press, New York, 1961.

Keyfitz, B.; Melnik, R.; and Grossman, B.: Grumman Report R5-525, 1976.
Sirovich, L.; and Huo, C.: AIAA J. 14, no. 8, 1976.

Landau, L. D.: Fluid Mechanics, Pergamon Press, New York, 1959.

Guderley, K.: The Theory of Transonic Flows, Pergamon Press, New York,
1962.

Zierep, J.; and Oswatitsch, R.: ZAMM 40 supp., T143-144, 1960.

Melnik, R.; and Grossman, B.: Symposium Transsonicum II, Gottingen, 1975.
Magnus, R.; and Yoshihara, H.: NASA CR-2186, 1973.

Murman, E. M.: ATAA J. 12, no. 5, 1974, pp. 626-633.

Cheng, H. K.; and Hafez, M. M.: AIAA Paper 73-88, 1973.

Cheng, H. K.; and Hafez, M. M.: ATIAA Paper 7551, 1975.

Caughy, D. A,; and Jameson, A.: ATAA Paper 76100, 1976.

Ballhaus, W.; and Steger, J.: NASA TM X-73082, 1975.

Brandt, A.; and South, J.: Project SQUID, Monterey, 1976.

Yu, N. J.; and Seebass, A. R.: Symposium Transsonicum II, Gottingen, 1975.

Warming, R. F.; and Beam, R. M.: ATAA Second Computational Fluid Dynamics
Conference, Hartford, 1975.

Martin, E.: AIAA Second Computational Fluid Dynamics Conference, Hartford,.
1975.

Oden, J. T.: Finite Elements of Nonlinear Continua, McGraw Hill, 1972.

Wahlbin, L. B.: Mathematical Aspects of Finite Elements, AP. 1974.



24,

25,

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

Kreiss, H. 0.; and Scherer, G.: Mathematical Aspects of Finite Element in
Partial Differential Equations, Academic Press, New York, 1974.

Swartz, B.; and Wendroff, B.: Math. of Comp. 23, no. 105, 1969, pp. 37-49.

Carasso, A.: Math. of Comp. 29, no. 130, 1974, pp. 447-463.

Carasso, A.: Math. of Comp. 28, no. 127, 1974, pp. 757-767.

Mote, C. D.: Int. J. Num. Methods Eng. 3, no. 4, 1971, pp. 565-574.

Wang, C. T.: J. Aero, Sci. 17, 1950, p. 343.

Weare, T. J.: Comp. Meth. in Appl. Mech. and Engr. 7, 1976, pp. 351-357.

Kawahara, M.: Second International Symposium on Finite Element Methods in
Flow Problems, 1976.

Bauer, F.; Korn, D.; Jameson, A.; and Garabedian, P.: Supercritical Wing
Sections, Springer Verlag, New York, 1975.

Birkhoff, G.; and Gulati, S.: SIAM J. Num. Analysis 11, no. 4, 1974.

Wheeler, M. F.: SIAM J. Num. Analysis 11, no. 4, 1974.

Birkhoff, G.; and Dougalis, V. A. (edited by Vichmevetsky, R.): Advances in
Computer Methods For Partial Differential Equations, AICA, 1975.

Swartz, B. (edited by Vichnevetsky, R.): Advances in Computer Methods For
Partial Differential Equations, AICA, 1975.

Vichnevetsky, R.; and De Schutter, F.: Advances in Computer Methods For
Partial Differential Equations, AICA, 1975, p. 46.

Vichnevetsky, R.; and Pfeiffer, B.: Advances in Computer Methods For
Partial Differential Equations, AICA, 1975, p. 53.

Goudrea, G. L.; and Taylor, R. L.: Comp. Meth. in Appl. Mech. and Engr. 2,
1972, pp. 64-97.

Argyris, J. H.; Dunne, P. C.; and Angelopoulos, T.: Comp. Meth. in Appl.
Mech. and Engr. 2, 1973, pp. 203-250.

Argyris, J. H.; and Scharpf, D. W.: The Aero. J. of the Roy. Aero. Soc.,
1969, pp. 1041-1044.

Fried, J.: AIAA J. 7, 1170, 1969.

Zienkiewicz, O. C.; and Lewis, R. W.: J. of Earthquake Engr., 1972,
pp. 407-408.

85



44,

45,

46.

47.

48.

49.

50.

86

Hafez, M. M.; Murman, E. M.; and Wellford, L, C.: Second Intermnational
Symposium on Finite Element Methods in Flow Problems, 1976.

Chan, S. T. K.; and Brashears, M. R.: AFFDL-TR-74-11 Wright Patterson Air
Force Base, Ohio, 1974.

Von Neumann, J.; and Lees, M.: J. Soc. Ind. Appl. Math. 10, 1962, p. 610.

Showalter, R. W.: SIAM J. Math. Analysis 1, no. 1, 1970.

Wellford, L. C.; and Oden, J. T.: J. of Comp. Physics 19, no. 2, 1975,
p. 179.

Glowinski, R.; and Pironneau, O.: Second International Symposium on Finite
Element Methods in Flow Problems, 1976.

Wellford, L. C.; and Hafez, M. M.: Second International Symposium on
Finite Element Methods in Flow Problems, 1976.



,/r—Far-Field Formula—\\

~ Characteristics

Sonic Line

| Shock

Figure 1. Formulation of Transonic Small-Disturbance Theory
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E = Elliptic Point
P = Parabolic Point
H = Hyperbolic Point
SPO = Shock-Point Operator
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Sonic Line

>

Figure 2. Murman's Fully Conservative Finite-Difference Scheme
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Shock~ LF/TE

Point Far On Grid Grid

Case Operator Field Point Size
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Ccl No No Between Std
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' Dy/2
El No No Yes Std
F1 Yes No Between Std
Gl Yes No Yes Std

H1 Yes No Yes Dx/2

Dy/2

Figure 3A Finite-Difference Solution of Transonic Flow Using Murman's

Scheme - Case Identification and Convergence Summary
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Figure 3B. Finite-Difference Solution of Transonic Flow Based on Murman's Scheme
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Figure 3C. Finite-Difference Solution of Transonic Flow Based on Murman's Scheme
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Figure 4A. Implicit, Second-Order-Accurate, Finite-Difference Schemes
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Murman's Second-Order Scheme

Subsonic Sonic Supersonic

Warming and Beam's Second-Order Scheme

+ -

Subsonic Sonic Supersonic Shock

Figure 4B. Comparison of Murman's Second-Order Scheme with Warming
and Beam's Second-Order Scheme
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Figure 4C. Second-Order-Accurate, Fully Conservative Scheme for
Finite-Difference Solution of Transonic Flow
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Point Far Parabolic Grid
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A4 Second-Order No Two Std
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Figure 5A. Second-Order Finite-Difference Solution of Transonic
Flow - Case Identification and Convergence Summary
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Figure 5B. Second-Order-Accurate, Finite-Difference Solutions For Transonic
Flow — Coarse Grid, Showing Effect of Shock Operator
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Subsonic Case (BVP); Coefficients for ¢

Coefficient
of . Xy Xy X3 Xy X5 Xg
2 2
Galerkin S54h _ 36 156h + 36 13h 1 22h" 1
. 420 30 420 30 420 10 420 10
Formulation
156h , 36 54h 36 2?1 ~13n% 1
420 30 420 30 420 10 420 10
Hamiltonian
Formulation Same as Galerkin
12 12 12 12 -6 1 -6 6
Least- - = - o — - — - T
Squares h3 oh h3 >h h2 > h2 >
Formulation
N 54h 156h + 13h2 _ 22h2
420 420 420 420
12 12 12 12 6 6 6 1
=+ = - = - = =+ = =+ <
h3 5h h3 5h h2 5 h2 5
2 2
+ 156h N 54h + 22h -13h
420 420 420 420
Figure 8A. Comparison of Influence Coefficients For the ¢ Term (Degree

of Freedom Number Two) For the Galerkin, Hamiltonian, and
Least-Squares Approaches (Nomenclature Is Defined in the Text)




Subsonic Case (BVP); Coefficients for ¢

Coefficient
of . . . Xy X, X3 X, Xs Xg
!
2 2 3 ! 3 1
. -13h° 1 | -22n° 1 ~3n° _h_ | 4h>  4h |
Galerkin | e * 1o 520 T 10 2200 "30 | w0t30t
Formulation i J
221 L L] 13n° 1 |’ L 4h -3n n
420 10 420 10 | 420 30 420 30
Hamiltonian
! Formulation Same as Galerkin
i
1
6 1 -6 6 2 h 4 4h
Least- — + —- - T - - T -+
Squares h2 5 h 5 h 15 h 15
Formulation —l3h2 —22h2 —3h3 s 4h3
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+ +
6 6 -6 1 4 4h 2 h
- 4+ = - _ = = 4 = B
hZ 5 h2 5 h 5 h 15.
+ 22h2 13h2 + 4h3 _ 3h3
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Figure 8B. Comparison of Influence Coefficients For the ¢ Term (Degree
of Freedom Number Five) For the Galerkin, Hamilit(onian, and
Least-Squares Approaches (Nomenclature Is Defined in the Text)
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Subsonic Case (IVP); Coefficients for ¢

Coefficient
Of - X1 Xa X3 Xy X5 Xe
2 2
Galerkin '54h 36 156h + 36 13h 1 -22h 1
. 420 30 420 30 420 10 420 10
Formulation
0 -1 0
Hamiltonian Hamiltonian Influence Coefficients are Determined From Two ¢ Terms
R R XX
Formulation (See Fig. 8B)
6 1 -6 6 2 h 4 4h
Least- — + T — - = £ = 24
Squares h2 5 h2 5 h 15 h 15
Formulation _ l3h2 _ 22h2 o ) 3h3 . 4h3 o
420 420 420 420
Figure 9A. Comparison of Influence Coefficients For the ¢ Term For the

Galerkin, Hamiltonian and Least-Squares Formulations - Supersonic
Case (Nomenclature Is Defined in the Text)
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Supersonic Case (IVP); Coefficients for ¢X
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420 420 420 420

*
This row obtained by weighting at point 5

*

Figure 9B.

Comparison of the Influence Coefficients For the

*
This row obtained by weighting at point 4

¢ Term For

Galerkin, Hamiltonian, and Least-Squares Formulations - Supersonic
Case (Nomenclature Is Defined in the Text)
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Galerkin or Hamiltonian Influence Coefficients For ¢

Figure 10A. Influence Coefficients For Galerkin and Hamilteonian

Influence Coefficients
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Hamiltonian Influence Coefficients For ¢x — Supersonic
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Figure 11A.

Influence Coefficients For the Hamiltonian Formulation —

Supersonic Case For the ¢y Term Weighted at Point 14
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Galerkin Influence Coefficients For ¢ Term — Supersonic
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Figure 12A. Influence Coefficients For Galerkin Formulation—
Supersonic Case For ¢ Term
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Figure 13A Comparison of the Galerkin Method With the Finite-Difference
Method For Incompressible Flow
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Figure 13B. Comparison of Finite-Element and Finite-Difference Results For Transonic Flow
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(See Fig. 14B)
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Figure 14A. Comparison Between Finite-Element and Finite-Difference Solutions
Using Shock~Point Operators
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Case

Shock-Peint Operator

Numerical

Configuration Used
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D6

E6

Finite Element SPO

Finite Element SPO

Locally Normal SPO

Locally Normal SPO

Note:.

All Cases Gave Results Identical Within Three Significant Digits

Figure 14B. Identification of Finite-Element Solutions Using Shock-Point Operator
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Case Number of Iterations Characteristics of Numerical Method
A2 143 ——-4 FE/FD Super.
B2 113 - RE + AV
-
C2 190-Not Convergent —_
Last Residual 9 x 10 ° 1
T
D2 190-Not Convergent

Last Residual 2 x 10 %

Figure 15. Effect of Different Parabolic Blending Elements on Convergence

in a Finite-Element Scheme




Figure 16. Grid System Used For the Finite-Element Solution
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~— — — — Present Analysis
Murman, K = 1.8 (ref. 13)
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Figure 17. Comparison Between the Finite-Element Solution of
Transonic Flow and the Finite-Difference Solution
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